.. _types: Data Types ========== The OPC UA protocol defines 25 builtin data types and three ways of combining them into higher-order types: arrays, structures and unions. In open62541, only the builtin data types are defined manually. All other data types are generated from standard XML definitions. Their exact definitions can be looked up at https://opcfoundation.org/UA/schemas/Opc.Ua.Types.bsd. For users that are new to open62541, take a look at the :ref:`tutorial for working with data types` before diving into the implementation details. Builtin Types ------------- Boolean ^^^^^^^ A two-state logical value (true or false). .. code-block:: c typedef bool UA_Boolean; #define UA_TRUE true UA_INTERNAL_DEPRECATED #define UA_FALSE false UA_INTERNAL_DEPRECATED SByte ^^^^^ An integer value between -128 and 127. .. code-block:: c typedef int8_t UA_SByte; #define UA_SBYTE_MIN (-128) #define UA_SBYTE_MAX 127 Byte ^^^^ An integer value between 0 and 255. .. code-block:: c typedef uint8_t UA_Byte; #define UA_BYTE_MIN 0 #define UA_BYTE_MAX 255 Int16 ^^^^^ An integer value between -32 768 and 32 767. .. code-block:: c typedef int16_t UA_Int16; #define UA_INT16_MIN (-32768) #define UA_INT16_MAX 32767 UInt16 ^^^^^^ An integer value between 0 and 65 535. .. code-block:: c typedef uint16_t UA_UInt16; #define UA_UINT16_MIN 0 #define UA_UINT16_MAX 65535 Int32 ^^^^^ An integer value between -2 147 483 648 and 2 147 483 647. .. code-block:: c typedef int32_t UA_Int32; #define UA_INT32_MIN ((int32_t)-2147483648LL) #define UA_INT32_MAX 2147483647L UInt32 ^^^^^^ An integer value between 0 and 4 294 967 295. .. code-block:: c typedef uint32_t UA_UInt32; #define UA_UINT32_MIN 0 #define UA_UINT32_MAX 4294967295UL Int64 ^^^^^ An integer value between -9 223 372 036 854 775 808 and 9 223 372 036 854 775 807. .. code-block:: c typedef int64_t UA_Int64; #define UA_INT64_MAX (int64_t)9223372036854775807LL #define UA_INT64_MIN ((int64_t)-UA_INT64_MAX-1LL) UInt64 ^^^^^^ An integer value between 0 and 18 446 744 073 709 551 615. .. code-block:: c typedef uint64_t UA_UInt64; #define UA_UINT64_MIN 0 #define UA_UINT64_MAX (uint64_t)18446744073709551615ULL Float ^^^^^ An IEEE single precision (32 bit) floating point value. .. code-block:: c typedef float UA_Float; #define UA_FLOAT_MIN FLT_MIN; #define UA_FLOAT_MAX FLT_MAX; Double ^^^^^^ An IEEE double precision (64 bit) floating point value. .. code-block:: c typedef double UA_Double; #define UA_DOUBLE_MIN DBL_MIN; #define UA_DOUBLE_MAX DBL_MAX; .. _statuscode: StatusCode ^^^^^^^^^^ A numeric identifier for an error or condition that is associated with a value or an operation. See the section :ref:`statuscodes` for the meaning of a specific code. Each StatusCode has one of three "severity" bit-flags: Good, Uncertain, Bad. An additional reason is indicated by the SubCode bitfield. - A StatusCode with severity Good means that the value is of good quality. - A StatusCode with severity Uncertain means that the quality of the value is uncertain for reasons indicated by the SubCode. - A StatusCode with severity Bad means that the value is not usable for reasons indicated by the SubCode. .. code-block:: c typedef uint32_t UA_StatusCode; /* Returns the human-readable name of the StatusCode. If no matching StatusCode * is found, a default string for "Unknown" is returned. This feature might be * disabled to create a smaller binary with the * UA_ENABLE_STATUSCODE_DESCRIPTIONS build-flag. Then the function returns an * empty string for every StatusCode. */ const char * UA_StatusCode_name(UA_StatusCode code); /* Extracts the severity from a StatusCode. See Part 4, Section 7.34 for * details. */ UA_INLINABLE(UA_Boolean UA_StatusCode_isBad(UA_StatusCode code), { return ((code >> 30) >= 0x02); }) UA_INLINABLE(UA_Boolean UA_StatusCode_isUncertain(UA_StatusCode code), { return ((code >> 30) == 0x01); }) UA_INLINABLE(UA_Boolean UA_StatusCode_isGood(UA_StatusCode code), { return ((code >> 30) == 0x00); }) /* Compares the top 16 bits of two StatusCodes for equality. This should only * be used when processing user-defined StatusCodes e.g when processing a ReadResponse. * As a convention, the lower bits of StatusCodes should not be used internally, meaning * can compare them without the use of this function. */ UA_INLINABLE(UA_Boolean UA_StatusCode_isEqualTop(UA_StatusCode s1, UA_StatusCode s2), { return ((s1 & 0xFFFF0000) == (s2 & 0xFFFF0000)); }) String ^^^^^^ A sequence of Unicode characters. Strings are just an array of UA_Byte. .. code-block:: c typedef struct { size_t length; /* The length of the string */ UA_Byte *data; /* The content (not null-terminated) */ } UA_String; /* Copies the content on the heap. Returns a null-string when alloc fails */ UA_String UA_String_fromChars(const char *src); UA_Boolean UA_String_isEmpty(const UA_String *s); extern const UA_String UA_STRING_NULL; ``UA_STRING`` returns a string pointing to the original char-array. ``UA_STRING_ALLOC`` is shorthand for ``UA_String_fromChars`` and makes a copy of the char-array. .. code-block:: c UA_INLINABLE(UA_String UA_STRING(char *chars), { UA_String s; memset(&s, 0, sizeof(s)); if(!chars) return s; s.length = strlen(chars); s.data = (UA_Byte*)chars; return s; }) #define UA_STRING_ALLOC(CHARS) UA_String_fromChars(CHARS) /* Define strings at compile time (in ROM) */ #define UA_STRING_STATIC(CHARS) {sizeof(CHARS)-1, (UA_Byte*)CHARS} .. _datetime: DateTime ^^^^^^^^ An instance in time. A DateTime value is encoded as a 64-bit signed integer which represents the number of 100 nanosecond intervals since January 1, 1601 (UTC). The methods providing an interface to the system clock are architecture- specific. Usually, they provide a UTC clock that includes leap seconds. The OPC UA standard allows the use of International Atomic Time (TAI) for the DateTime instead. But this is still unusual and not implemented for most SDKs. Currently (2019), UTC and TAI are 37 seconds apart due to leap seconds. .. code-block:: c typedef int64_t UA_DateTime; /* Multiples to convert durations to DateTime */ #define UA_DATETIME_USEC 10LL #define UA_DATETIME_MSEC (UA_DATETIME_USEC * 1000LL) #define UA_DATETIME_SEC (UA_DATETIME_MSEC * 1000LL) /* The current time in UTC time */ UA_DateTime UA_DateTime_now(void); /* Offset between local time and UTC time */ UA_Int64 UA_DateTime_localTimeUtcOffset(void); /* CPU clock invariant to system time changes. Use only to measure durations, * not absolute time. */ UA_DateTime UA_DateTime_nowMonotonic(void); /* Represents a Datetime as a structure */ typedef struct UA_DateTimeStruct { UA_UInt16 nanoSec; UA_UInt16 microSec; UA_UInt16 milliSec; UA_UInt16 sec; UA_UInt16 min; UA_UInt16 hour; UA_UInt16 day; /* From 1 to 31 */ UA_UInt16 month; /* From 1 to 12 */ UA_Int16 year; /* Can be negative (BC) */ } UA_DateTimeStruct; UA_DateTimeStruct UA_DateTime_toStruct(UA_DateTime t); UA_DateTime UA_DateTime_fromStruct(UA_DateTimeStruct ts); /* The C99 standard (7.23.1) says: "The range and precision of times * representable in clock_t and time_t are implementation-defined." On most * systems, time_t is a 4 or 8 byte integer counting seconds since the UTC Unix * epoch. The following methods are used for conversion. */ /* Datetime of 1 Jan 1970 00:00 */ #define UA_DATETIME_UNIX_EPOCH (11644473600LL * UA_DATETIME_SEC) UA_INLINABLE(UA_Int64 UA_DateTime_toUnixTime(UA_DateTime date), { return (date - UA_DATETIME_UNIX_EPOCH) / UA_DATETIME_SEC; }) UA_INLINABLE(UA_DateTime UA_DateTime_fromUnixTime(UA_Int64 unixDate), { return (unixDate * UA_DATETIME_SEC) + UA_DATETIME_UNIX_EPOCH; }) Guid ^^^^ A 16 byte value that can be used as a globally unique identifier. .. code-block:: c typedef struct { UA_UInt32 data1; UA_UInt16 data2; UA_UInt16 data3; UA_Byte data4[8]; } UA_Guid; extern const UA_Guid UA_GUID_NULL; /* Print a Guid in the human-readable format defined in Part 6, 5.1.3 * * Format: C496578A-0DFE-4B8F-870A-745238C6AEAE * | | | | | | * 0 8 13 18 23 36 * * This allocates memory if the output argument is an empty string. Tries to use * the given buffer otherwise. */ UA_StatusCode UA_Guid_print(const UA_Guid *guid, UA_String *output); /* Parse the humand-readable Guid format */ #ifdef UA_ENABLE_PARSING UA_StatusCode UA_Guid_parse(UA_Guid *guid, const UA_String str); UA_INLINABLE(UA_Guid UA_GUID(const char *chars), { UA_Guid guid; UA_Guid_parse(&guid, UA_STRING((char*)(uintptr_t)chars)); return guid; }) #endif ByteString ^^^^^^^^^^ A sequence of octets. .. code-block:: c typedef UA_String UA_ByteString; extern const UA_ByteString UA_BYTESTRING_NULL; /* Allocates memory of size length for the bytestring. * The content is not set to zero. */ UA_StatusCode UA_ByteString_allocBuffer(UA_ByteString *bs, size_t length); /* Converts a ByteString to the corresponding * base64 representation */ UA_StatusCode UA_ByteString_toBase64(const UA_ByteString *bs, UA_String *output); /* Parse a ByteString from a base64 representation */ UA_StatusCode UA_ByteString_fromBase64(UA_ByteString *bs, const UA_String *input); #define UA_BYTESTRING(chars) UA_STRING(chars) #define UA_BYTESTRING_ALLOC(chars) UA_STRING_ALLOC(chars) /* Returns a non-cryptographic hash of a bytestring */ UA_UInt32 UA_ByteString_hash(UA_UInt32 initialHashValue, const UA_Byte *data, size_t size); XmlElement ^^^^^^^^^^ An XML element. .. code-block:: c typedef UA_String UA_XmlElement; .. _nodeid: NodeId ^^^^^^ An identifier for a node in the address space of an OPC UA Server. .. code-block:: c enum UA_NodeIdType { UA_NODEIDTYPE_NUMERIC = 0, /* In the binary encoding, this can also * become 1 or 2 (two-byte and four-byte * encoding of small numeric nodeids) */ UA_NODEIDTYPE_STRING = 3, UA_NODEIDTYPE_GUID = 4, UA_NODEIDTYPE_BYTESTRING = 5 }; typedef struct { UA_UInt16 namespaceIndex; enum UA_NodeIdType identifierType; union { UA_UInt32 numeric; UA_String string; UA_Guid guid; UA_ByteString byteString; } identifier; } UA_NodeId; extern const UA_NodeId UA_NODEID_NULL; UA_Boolean UA_NodeId_isNull(const UA_NodeId *p); /* Print the NodeId in the human-readable format defined in Part 6, * 5.3.1.10. * * Examples: * UA_NODEID("i=13") * UA_NODEID("ns=10;i=1") * UA_NODEID("ns=10;s=Hello:World") * UA_NODEID("g=09087e75-8e5e-499b-954f-f2a9603db28a") * UA_NODEID("ns=1;b=b3BlbjYyNTQxIQ==") // base64 * * The method can either use a pre-allocated string buffer or allocates memory * internally if called with an empty output string. */ UA_StatusCode UA_NodeId_print(const UA_NodeId *id, UA_String *output); /* Parse the human-readable NodeId format. Attention! String and * ByteString NodeIds have their identifier malloc'ed and need to be * cleaned up. */ #ifdef UA_ENABLE_PARSING UA_StatusCode UA_NodeId_parse(UA_NodeId *id, const UA_String str); UA_INLINABLE(UA_NodeId UA_NODEID(const char *chars), { UA_NodeId id; UA_NodeId_parse(&id, UA_STRING((char*)(uintptr_t)chars)); return id; }) #endif The following methods are a shorthand for creating NodeIds. .. code-block:: c UA_INLINABLE(UA_NodeId UA_NODEID_NUMERIC(UA_UInt16 nsIndex, UA_UInt32 identifier), { UA_NodeId id; memset(&id, 0, sizeof(UA_NodeId)); id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_NUMERIC; id.identifier.numeric = identifier; return id; }) UA_INLINABLE(UA_NodeId UA_NODEID_STRING(UA_UInt16 nsIndex, char *chars), { UA_NodeId id; memset(&id, 0, sizeof(UA_NodeId)); id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_STRING; id.identifier.string = UA_STRING(chars); return id; }) UA_INLINABLE(UA_NodeId UA_NODEID_STRING_ALLOC(UA_UInt16 nsIndex, const char *chars), { UA_NodeId id; memset(&id, 0, sizeof(UA_NodeId)); id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_STRING; id.identifier.string = UA_STRING_ALLOC(chars); return id; }) UA_INLINABLE(UA_NodeId UA_NODEID_GUID(UA_UInt16 nsIndex, UA_Guid guid), { UA_NodeId id; memset(&id, 0, sizeof(UA_NodeId)); id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_GUID; id.identifier.guid = guid; return id; }) UA_INLINABLE(UA_NodeId UA_NODEID_BYTESTRING(UA_UInt16 nsIndex, char *chars), { UA_NodeId id; memset(&id, 0, sizeof(UA_NodeId)); id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_BYTESTRING; id.identifier.byteString = UA_BYTESTRING(chars); return id; }) UA_INLINABLE(UA_NodeId UA_NODEID_BYTESTRING_ALLOC(UA_UInt16 nsIndex, const char *chars), { UA_NodeId id; memset(&id, 0, sizeof(UA_NodeId)); id.namespaceIndex = nsIndex; id.identifierType = UA_NODEIDTYPE_BYTESTRING; id.identifier.byteString = UA_BYTESTRING_ALLOC(chars); return id; }) /* Total ordering of NodeId */ UA_Order UA_NodeId_order(const UA_NodeId *n1, const UA_NodeId *n2); /* Returns a non-cryptographic hash for NodeId */ UA_UInt32 UA_NodeId_hash(const UA_NodeId *n); .. _expandednodeid: ExpandedNodeId ^^^^^^^^^^^^^^ A NodeId that allows the namespace URI to be specified instead of an index. .. code-block:: c typedef struct { UA_NodeId nodeId; UA_String namespaceUri; UA_UInt32 serverIndex; } UA_ExpandedNodeId; extern const UA_ExpandedNodeId UA_EXPANDEDNODEID_NULL; /* Print the ExpandedNodeId in the humand-readable format defined in Part 6, * 5.3.1.11: * * svr=;ns=;= * or * svr=;nsu=;= * * The definitions for svr, ns and nsu is omitted if zero / the empty string. * * The method can either use a pre-allocated string buffer or allocates memory * internally if called with an empty output string. */ UA_StatusCode UA_ExpandedNodeId_print(const UA_ExpandedNodeId *id, UA_String *output); /* Parse the human-readable NodeId format. Attention! String and * ByteString NodeIds have their identifier malloc'ed and need to be * cleaned up. */ #ifdef UA_ENABLE_PARSING UA_StatusCode UA_ExpandedNodeId_parse(UA_ExpandedNodeId *id, const UA_String str); UA_INLINABLE(UA_ExpandedNodeId UA_EXPANDEDNODEID(const char *chars), { UA_ExpandedNodeId id; UA_ExpandedNodeId_parse(&id, UA_STRING((char*)(uintptr_t)chars)); return id; }) #endif The following functions are shorthand for creating ExpandedNodeIds. .. code-block:: c UA_INLINABLE(UA_ExpandedNodeId UA_EXPANDEDNODEID_NUMERIC(UA_UInt16 nsIndex, UA_UInt32 identifier), { UA_ExpandedNodeId id; id.nodeId = UA_NODEID_NUMERIC(nsIndex, identifier); id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }) UA_INLINABLE(UA_ExpandedNodeId UA_EXPANDEDNODEID_STRING(UA_UInt16 nsIndex, char *chars), { UA_ExpandedNodeId id; id.nodeId = UA_NODEID_STRING(nsIndex, chars); id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }) UA_INLINABLE(UA_ExpandedNodeId UA_EXPANDEDNODEID_STRING_ALLOC(UA_UInt16 nsIndex, const char *chars), { UA_ExpandedNodeId id; id.nodeId = UA_NODEID_STRING_ALLOC(nsIndex, chars); id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }) UA_INLINABLE(UA_ExpandedNodeId UA_EXPANDEDNODEID_STRING_GUID(UA_UInt16 nsIndex, UA_Guid guid), { UA_ExpandedNodeId id; id.nodeId = UA_NODEID_GUID(nsIndex, guid); id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }) UA_INLINABLE(UA_ExpandedNodeId UA_EXPANDEDNODEID_BYTESTRING(UA_UInt16 nsIndex, char *chars), { UA_ExpandedNodeId id; id.nodeId = UA_NODEID_BYTESTRING(nsIndex, chars); id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }) UA_INLINABLE(UA_ExpandedNodeId UA_EXPANDEDNODEID_BYTESTRING_ALLOC(UA_UInt16 nsIndex, const char *chars), { UA_ExpandedNodeId id; id.nodeId = UA_NODEID_BYTESTRING_ALLOC(nsIndex, chars); id.serverIndex = 0; id.namespaceUri = UA_STRING_NULL; return id; }) UA_INLINABLE(UA_ExpandedNodeId UA_EXPANDEDNODEID_NODEID(UA_NodeId nodeId), { UA_ExpandedNodeId id; memset(&id, 0, sizeof(UA_ExpandedNodeId)); id.nodeId = nodeId; return id; }) /* Does the ExpandedNodeId point to a local node? That is, are namespaceUri and * serverIndex empty? */ UA_Boolean UA_ExpandedNodeId_isLocal(const UA_ExpandedNodeId *n); /* Total ordering of ExpandedNodeId */ UA_Order UA_ExpandedNodeId_order(const UA_ExpandedNodeId *n1, const UA_ExpandedNodeId *n2); /* Returns a non-cryptographic hash for ExpandedNodeId. The hash of an * ExpandedNodeId is identical to the hash of the embedded (simple) NodeId if * the ServerIndex is zero and no NamespaceUri is set. */ UA_UInt32 UA_ExpandedNodeId_hash(const UA_ExpandedNodeId *n); .. _qualifiedname: QualifiedName ^^^^^^^^^^^^^ A name qualified by a namespace. .. code-block:: c typedef struct { UA_UInt16 namespaceIndex; UA_String name; } UA_QualifiedName; UA_INLINABLE(UA_Boolean UA_QualifiedName_isNull(const UA_QualifiedName *q), { return (q->namespaceIndex == 0 && q->name.length == 0); }) /* Returns a non-cryptographic hash for QualifiedName */ UA_UInt32 UA_QualifiedName_hash(const UA_QualifiedName *q); UA_INLINABLE(UA_QualifiedName UA_QUALIFIEDNAME(UA_UInt16 nsIndex, char *chars), { UA_QualifiedName qn; qn.namespaceIndex = nsIndex; qn.name = UA_STRING(chars); return qn; }) UA_INLINABLE(UA_QualifiedName UA_QUALIFIEDNAME_ALLOC(UA_UInt16 nsIndex, const char *chars), { UA_QualifiedName qn; qn.namespaceIndex = nsIndex; qn.name = UA_STRING_ALLOC(chars); return qn; }) LocalizedText ^^^^^^^^^^^^^ Human readable text with an optional locale identifier. .. code-block:: c typedef struct { UA_String locale; UA_String text; } UA_LocalizedText; UA_INLINABLE(UA_LocalizedText UA_LOCALIZEDTEXT(char *locale, char *text), { UA_LocalizedText lt; lt.locale = UA_STRING(locale); lt.text = UA_STRING(text); return lt; }) UA_INLINABLE(UA_LocalizedText UA_LOCALIZEDTEXT_ALLOC(const char *locale, const char *text), { UA_LocalizedText lt; lt.locale = UA_STRING_ALLOC(locale); lt.text = UA_STRING_ALLOC(text); return lt; }) .. _numericrange: NumericRange ^^^^^^^^^^^^ NumericRanges are used to indicate subsets of a (multidimensional) array. They no official data type in the OPC UA standard and are transmitted only with a string encoding, such as "1:2,0:3,5". The colon separates min/max index and the comma separates dimensions. A single value indicates a range with a single element (min==max). .. code-block:: c typedef struct { UA_UInt32 min; UA_UInt32 max; } UA_NumericRangeDimension; typedef struct { size_t dimensionsSize; UA_NumericRangeDimension *dimensions; } UA_NumericRange; UA_StatusCode UA_NumericRange_parse(UA_NumericRange *range, const UA_String str); UA_INLINABLE(UA_NumericRange UA_NUMERICRANGE(const char *s), { UA_NumericRange nr; memset(&nr, 0, sizeof(nr)); UA_NumericRange_parse(&nr, UA_STRING((char*)(uintptr_t)s)); return nr; }) .. _variant: Variant ^^^^^^^ Variants may contain values of any type together with a description of the content. See the section on :ref:`generic-types` on how types are described. The standard mandates that variants contain built-in data types only. If the value is not of a builtin type, it is wrapped into an :ref:`extensionobject`. open62541 hides this wrapping transparently in the encoding layer. If the data type is unknown to the receiver, the variant contains the original ExtensionObject in binary or XML encoding. Variants may contain a scalar value or an array. For details on the handling of arrays, see the section on :ref:`array-handling`. Array variants can have an additional dimensionality (matrix, 3-tensor, ...) defined in an array of dimension lengths. The actual values are kept in an array of dimensions one. For users who work with higher-dimensions arrays directly, keep in mind that dimensions of higher rank are serialized first (the highest rank dimension has stride 1 and elements follow each other directly). Usually it is simplest to interact with higher-dimensional arrays via ``UA_NumericRange`` descriptions (see :ref:`array-handling`). To differentiate between scalar / array variants, the following definition is used. ``UA_Variant_isScalar`` provides simplified access to these checks. - ``arrayLength == 0 && data == NULL``: undefined array of length -1 - ``arrayLength == 0 && data == UA_EMPTY_ARRAY_SENTINEL``: array of length 0 - ``arrayLength == 0 && data > UA_EMPTY_ARRAY_SENTINEL``: scalar value - ``arrayLength > 0``: array of the given length Variants can also be *empty*. Then, the pointer to the type description is ``NULL``. .. code-block:: c /* Forward declaration. See the section on Generic Type Handling */ struct UA_DataType; typedef struct UA_DataType UA_DataType; #define UA_EMPTY_ARRAY_SENTINEL ((void*)0x01) typedef enum { UA_VARIANT_DATA, /* The data has the same lifecycle as the variant */ UA_VARIANT_DATA_NODELETE /* The data is "borrowed" by the variant and is * not deleted when the variant is cleared up. * The array dimensions also borrowed. */ } UA_VariantStorageType; typedef struct { const UA_DataType *type; /* The data type description */ UA_VariantStorageType storageType; size_t arrayLength; /* The number of elements in the data array */ void *data; /* Points to the scalar or array data */ size_t arrayDimensionsSize; /* The number of dimensions */ UA_UInt32 *arrayDimensions; /* The length of each dimension */ } UA_Variant; /* Returns true if the variant has no value defined (contains neither an array * nor a scalar value). * * @param v The variant * @return Is the variant empty */ UA_INLINABLE(UA_Boolean UA_Variant_isEmpty(const UA_Variant *v), { return v->type == NULL; }) /* Returns true if the variant contains a scalar value. Note that empty variants * contain an array of length -1 (undefined). * * @param v The variant * @return Does the variant contain a scalar value */ UA_INLINABLE(UA_Boolean UA_Variant_isScalar(const UA_Variant *v), { return (v->arrayLength == 0 && v->data > UA_EMPTY_ARRAY_SENTINEL); }) /* Returns true if the variant contains a scalar value of the given type. * * @param v The variant * @param type The data type * @return Does the variant contain a scalar value of the given type */ UA_INLINABLE(UA_Boolean UA_Variant_hasScalarType(const UA_Variant *v, const UA_DataType *type), { return UA_Variant_isScalar(v) && type == v->type; }) /* Returns true if the variant contains an array of the given type. * * @param v The variant * @param type The data type * @return Does the variant contain an array of the given type */ UA_INLINABLE(UA_Boolean UA_Variant_hasArrayType(const UA_Variant *v, const UA_DataType *type), { return (!UA_Variant_isScalar(v)) && type == v->type; }) /* Set the variant to a scalar value that already resides in memory. The value * takes on the lifecycle of the variant and is deleted with it. * * @param v The variant * @param p A pointer to the value data * @param type The datatype of the value in question */ void UA_Variant_setScalar(UA_Variant *v, void *p, const UA_DataType *type); /* Set the variant to a scalar value that is copied from an existing variable. * @param v The variant * @param p A pointer to the value data * @param type The datatype of the value * @return Indicates whether the operation succeeded or returns an error code */ UA_StatusCode UA_Variant_setScalarCopy(UA_Variant *v, const void *p, const UA_DataType *type); /* Set the variant to an array that already resides in memory. The array takes * on the lifecycle of the variant and is deleted with it. * * @param v The variant * @param array A pointer to the array data * @param arraySize The size of the array * @param type The datatype of the array */ void UA_Variant_setArray(UA_Variant *v, void *array, size_t arraySize, const UA_DataType *type); /* Set the variant to an array that is copied from an existing array. * * @param v The variant * @param array A pointer to the array data * @param arraySize The size of the array * @param type The datatype of the array * @return Indicates whether the operation succeeded or returns an error code */ UA_StatusCode UA_Variant_setArrayCopy(UA_Variant *v, const void *array, size_t arraySize, const UA_DataType *type); /* Copy the variant, but use only a subset of the (multidimensional) array into * a variant. Returns an error code if the variant is not an array or if the * indicated range does not fit. * * @param src The source variant * @param dst The target variant * @param range The range of the copied data * @return Returns UA_STATUSCODE_GOOD or an error code */ UA_StatusCode UA_Variant_copyRange(const UA_Variant *src, UA_Variant *dst, const UA_NumericRange range); /* Insert a range of data into an existing variant. The data array cannot be * reused afterwards if it contains types without a fixed size (e.g. strings) * since the members are moved into the variant and take on its lifecycle. * * @param v The variant * @param dataArray The data array. The type must match the variant * @param dataArraySize The length of the data array. This is checked to match * the range size. * @param range The range of where the new data is inserted * @return Returns UA_STATUSCODE_GOOD or an error code */ UA_StatusCode UA_Variant_setRange(UA_Variant *v, void *array, size_t arraySize, const UA_NumericRange range); /* Deep-copy a range of data into an existing variant. * * @param v The variant * @param dataArray The data array. The type must match the variant * @param dataArraySize The length of the data array. This is checked to match * the range size. * @param range The range of where the new data is inserted * @return Returns UA_STATUSCODE_GOOD or an error code */ UA_StatusCode UA_Variant_setRangeCopy(UA_Variant *v, const void *array, size_t arraySize, const UA_NumericRange range); .. _extensionobject: ExtensionObject ^^^^^^^^^^^^^^^ ExtensionObjects may contain scalars of any data type. Even those that are unknown to the receiver. See the section on :ref:`generic-types` on how types are described. If the received data type is unknown, the encoded string and target NodeId is stored instead of the decoded value. .. code-block:: c typedef enum { UA_EXTENSIONOBJECT_ENCODED_NOBODY = 0, UA_EXTENSIONOBJECT_ENCODED_BYTESTRING = 1, UA_EXTENSIONOBJECT_ENCODED_XML = 2, UA_EXTENSIONOBJECT_DECODED = 3, UA_EXTENSIONOBJECT_DECODED_NODELETE = 4 /* Don't delete the content together with the ExtensionObject */ } UA_ExtensionObjectEncoding; typedef struct { UA_ExtensionObjectEncoding encoding; union { struct { UA_NodeId typeId; /* The nodeid of the datatype */ UA_ByteString body; /* The bytestring of the encoded data */ } encoded; struct { const UA_DataType *type; void *data; } decoded; } content; } UA_ExtensionObject; /* Initialize the ExtensionObject and set the "decoded" value to the given * pointer. The value will be deleted when the ExtensionObject is cleared. */ void UA_ExtensionObject_setValue(UA_ExtensionObject *eo, void *p, const UA_DataType *type); /* Initialize the ExtensionObject and set the "decoded" value to the given * pointer. The value will *not* be deleted when the ExtensionObject is * cleared. */ void UA_ExtensionObject_setValueNoDelete(UA_ExtensionObject *eo, void *p, const UA_DataType *type); /* Initialize the ExtensionObject and set the "decoded" value to a fresh copy of * the given value pointer. The value will be deleted when the ExtensionObject * is cleared. */ UA_StatusCode UA_ExtensionObject_setValueCopy(UA_ExtensionObject *eo, void *p, const UA_DataType *type); .. _datavalue: DataValue ^^^^^^^^^ A data value with an associated status code and timestamps. .. code-block:: c typedef struct { UA_Variant value; UA_DateTime sourceTimestamp; UA_DateTime serverTimestamp; UA_UInt16 sourcePicoseconds; UA_UInt16 serverPicoseconds; UA_StatusCode status; UA_Boolean hasValue : 1; UA_Boolean hasStatus : 1; UA_Boolean hasSourceTimestamp : 1; UA_Boolean hasServerTimestamp : 1; UA_Boolean hasSourcePicoseconds : 1; UA_Boolean hasServerPicoseconds : 1; } UA_DataValue; /* Copy the DataValue, but use only a subset of the (multidimensional) array of * of the variant of the source DataValue. Returns an error code if the variant * of the DataValue is not an array or if the indicated range does not fit. * * @param src The source DataValue * @param dst The target DataValue * @param range The range of the variant of the DataValue to copy * @return Returns UA_STATUSCODE_GOOD or an error code */ UA_StatusCode UA_DataValue_copyVariantRange(const UA_DataValue *src, UA_DataValue *dst, const UA_NumericRange range); DiagnosticInfo ^^^^^^^^^^^^^^ A structure that contains detailed error and diagnostic information associated with a StatusCode. .. code-block:: c typedef struct UA_DiagnosticInfo { UA_Boolean hasSymbolicId : 1; UA_Boolean hasNamespaceUri : 1; UA_Boolean hasLocalizedText : 1; UA_Boolean hasLocale : 1; UA_Boolean hasAdditionalInfo : 1; UA_Boolean hasInnerStatusCode : 1; UA_Boolean hasInnerDiagnosticInfo : 1; UA_Int32 symbolicId; UA_Int32 namespaceUri; UA_Int32 localizedText; UA_Int32 locale; UA_String additionalInfo; UA_StatusCode innerStatusCode; struct UA_DiagnosticInfo *innerDiagnosticInfo; } UA_DiagnosticInfo; .. _generic-types: Generic Type Handling --------------------- All information about a (builtin/structured) data type is stored in a ``UA_DataType``. The array ``UA_TYPES`` contains the description of all standard-defined types. This type description is used for the following generic operations that work on all types: - ``void T_init(T *ptr)``: Initialize the data type. This is synonymous with zeroing out the memory, i.e. ``memset(ptr, 0, sizeof(T))``. - ``T* T_new()``: Allocate and return the memory for the data type. The value is already initialized. - ``UA_StatusCode T_copy(const T *src, T *dst)``: Copy the content of the data type. Returns ``UA_STATUSCODE_GOOD`` or ``UA_STATUSCODE_BADOUTOFMEMORY``. - ``void T_clear(T *ptr)``: Delete the dynamically allocated content of the data type and perform a ``T_init`` to reset the type. - ``void T_delete(T *ptr)``: Delete the content of the data type and the memory for the data type itself. - ``void T_equal(T *p1, T *p2)``: Compare whether ``p1`` and ``p2`` have identical content. You can use ``UA_order`` if an absolute ordering is required. Specializations, such as ``UA_Int32_new()`` are derived from the generic type operations as static inline functions. .. code-block:: c typedef struct { #ifdef UA_ENABLE_TYPEDESCRIPTION const char *memberName; /* Human-readable member name */ #endif const UA_DataType *memberType;/* The member data type description */ UA_Byte padding : 6; /* How much padding is there before this member element? For arrays this is the padding before the size_t length member. (No padding between size_t and the following ptr.) For unions, the padding includes the size of the switchfield (the offset from the start of the union type). */ UA_Byte isArray : 1; /* The member is an array */ UA_Byte isOptional : 1; /* The member is an optional field */ } UA_DataTypeMember; /* The DataType "kind" is an internal type classification. It is used to * dispatch handling to the correct routines. */ #define UA_DATATYPEKINDS 31 typedef enum { UA_DATATYPEKIND_BOOLEAN = 0, UA_DATATYPEKIND_SBYTE = 1, UA_DATATYPEKIND_BYTE = 2, UA_DATATYPEKIND_INT16 = 3, UA_DATATYPEKIND_UINT16 = 4, UA_DATATYPEKIND_INT32 = 5, UA_DATATYPEKIND_UINT32 = 6, UA_DATATYPEKIND_INT64 = 7, UA_DATATYPEKIND_UINT64 = 8, UA_DATATYPEKIND_FLOAT = 9, UA_DATATYPEKIND_DOUBLE = 10, UA_DATATYPEKIND_STRING = 11, UA_DATATYPEKIND_DATETIME = 12, UA_DATATYPEKIND_GUID = 13, UA_DATATYPEKIND_BYTESTRING = 14, UA_DATATYPEKIND_XMLELEMENT = 15, UA_DATATYPEKIND_NODEID = 16, UA_DATATYPEKIND_EXPANDEDNODEID = 17, UA_DATATYPEKIND_STATUSCODE = 18, UA_DATATYPEKIND_QUALIFIEDNAME = 19, UA_DATATYPEKIND_LOCALIZEDTEXT = 20, UA_DATATYPEKIND_EXTENSIONOBJECT = 21, UA_DATATYPEKIND_DATAVALUE = 22, UA_DATATYPEKIND_VARIANT = 23, UA_DATATYPEKIND_DIAGNOSTICINFO = 24, UA_DATATYPEKIND_DECIMAL = 25, UA_DATATYPEKIND_ENUM = 26, UA_DATATYPEKIND_STRUCTURE = 27, UA_DATATYPEKIND_OPTSTRUCT = 28, /* struct with optional fields */ UA_DATATYPEKIND_UNION = 29, UA_DATATYPEKIND_BITFIELDCLUSTER = 30 /* bitfields + padding */ } UA_DataTypeKind; struct UA_DataType { #ifdef UA_ENABLE_TYPEDESCRIPTION const char *typeName; #endif UA_NodeId typeId; /* The nodeid of the type */ UA_NodeId binaryEncodingId; /* NodeId of datatype when encoded as binary */ //UA_NodeId xmlEncodingId; /* NodeId of datatype when encoded as XML */ UA_UInt32 memSize : 16; /* Size of the struct in memory */ UA_UInt32 typeKind : 6; /* Dispatch index for the handling routines */ UA_UInt32 pointerFree : 1; /* The type (and its members) contains no * pointers that need to be freed */ UA_UInt32 overlayable : 1; /* The type has the identical memory layout * in memory and on the binary stream. */ UA_UInt32 membersSize : 8; /* How many members does the type have? */ UA_DataTypeMember *members; }; /* Datatype arrays with custom type definitions can be added in a linked list to * the client or server configuration. */ typedef struct UA_DataTypeArray { const struct UA_DataTypeArray *next; const size_t typesSize; const UA_DataType *types; UA_Boolean cleanup; /* Free the array structure and its content when the client or server configuration containing it is cleaned up */ } UA_DataTypeArray; /* Returns the offset and type of a structure member. The return value is false * if the member was not found. * * If the member is an array, the offset points to the (size_t) length field. * (The array pointer comes after the length field without any padding.) */ #ifdef UA_ENABLE_TYPEDESCRIPTION UA_Boolean UA_DataType_getStructMember(const UA_DataType *type, const char *memberName, size_t *outOffset, const UA_DataType **outMemberType, UA_Boolean *outIsArray); #endif /* Test if the data type is a numeric builtin data type (via the typeKind field * of UA_DataType). This includes integers and floating point numbers. Not * included are Boolean, DateTime, StatusCode and Enums. */ UA_Boolean UA_DataType_isNumeric(const UA_DataType *type); Builtin data types can be accessed as UA_TYPES[UA_TYPES_XXX], where XXX is the name of the data type. If only the NodeId of a type is known, use the following method to retrieve the data type description. .. code-block:: c /* Returns the data type description for the type's identifier or NULL if no * matching data type was found. */ const UA_DataType * UA_findDataType(const UA_NodeId *typeId); /* * Add custom data types to the search scope of UA_findDataType. */ const UA_DataType * UA_findDataTypeWithCustom(const UA_NodeId *typeId, const UA_DataTypeArray *customTypes); The following functions are used for generic handling of data types. .. code-block:: c /* Allocates and initializes a variable of type dataType * * @param type The datatype description * @return Returns the memory location of the variable or NULL if no * memory could be allocated */ void * UA_new(const UA_DataType *type); /* Initializes a variable to default values * * @param p The memory location of the variable * @param type The datatype description */ UA_INLINABLE(void UA_init(void *p, const UA_DataType *type), { memset(p, 0, type->memSize); }) /* Copies the content of two variables. If copying fails (e.g. because no memory * was available for an array), then dst is emptied and initialized to prevent * memory leaks. * * @param src The memory location of the source variable * @param dst The memory location of the destination variable * @param type The datatype description * @return Indicates whether the operation succeeded or returns an error code */ UA_StatusCode UA_copy(const void *src, void *dst, const UA_DataType *type); /* Deletes the dynamically allocated content of a variable (e.g. resets all * arrays to undefined arrays). Afterwards, the variable can be safely deleted * without causing memory leaks. But the variable is not initialized and may * contain old data that is not memory-relevant. * * @param p The memory location of the variable * @param type The datatype description of the variable */ void UA_clear(void *p, const UA_DataType *type); #define UA_deleteMembers(p, type) UA_clear(p, type) /* Frees a variable and all of its content. * * @param p The memory location of the variable * @param type The datatype description of the variable */ void UA_delete(void *p, const UA_DataType *type); /* Pretty-print the value from the datatype. The output is pretty-printed JSON5. * Note that this format is non-standard and should not be sent over the * network. It can however be read by our own JSON decoding. * * @param p The memory location of the variable * @param type The datatype description of the variable * @param output A string that is used for the pretty-printed output. If the * memory for string is already allocated, we try to use the existing * string (the length is adjusted). If the string is empty, memory * is allocated for it. * @return Indicates whether the operation succeeded */ #ifdef UA_ENABLE_JSON_ENCODING UA_StatusCode UA_print(const void *p, const UA_DataType *type, UA_String *output); #endif /* Compare two values and return their order. * * For numerical types (including StatusCodes and Enums), their natural order is * used. NaN is the "smallest" value for floating point values. Different bit * representations of NaN are considered identical. * * All other types have *some* absolute ordering so that a < b, b < c -> a < c. * * The ordering of arrays (also strings) is in "shortlex": A shorter array is * always smaller than a longer array. Otherwise the first different element * defines the order. * * When members of different types are permitted (in Variants and * ExtensionObjects), the memory address in the "UA_DataType*" pointer * determines which variable is smaller. * * @param p1 The memory location of the first value * @param p2 The memory location of the first value * @param type The datatype description of both values */ UA_Order UA_order(const void *p1, const void *p2, const UA_DataType *type); /* Compare if two values have identical content. */ UA_INLINABLE(UA_Boolean UA_equal(const void *p1, const void *p2, const UA_DataType *type), { return (UA_order(p1, p2, type) == UA_ORDER_EQ); }) Binary Encoding/Decoding ------------------------ Encoding and decoding routines for the binary format. For the binary decoding additional data types can be forwarded. .. code-block:: c /* Returns the number of bytes the value p takes in binary encoding. Returns * zero if an error occurs. */ size_t UA_calcSizeBinary(const void *p, const UA_DataType *type); /* Encodes a data-structure in the binary format. If outBuf has a length of * zero, a buffer of the required size is allocated. Otherwise, encoding into * the existing outBuf is attempted (and may fail if the buffer is too * small). */ UA_StatusCode UA_encodeBinary(const void *p, const UA_DataType *type, UA_ByteString *outBuf); /* The structure with the decoding options may be extended in the future. * Zero-out the entire structure initially to ensure code-compatibility when * more fields are added in a later release. */ typedef struct { const UA_DataTypeArray *customTypes; /* Begin of a linked list with custom * datatype definitions */ } UA_DecodeBinaryOptions; /* Decodes a data structure from the input buffer in the binary format. It is * assumed that `p` points to valid memory (not necessarily zeroed out). The * options can be NULL and will be disregarded in that case. */ UA_StatusCode UA_decodeBinary(const UA_ByteString *inBuf, void *p, const UA_DataType *type, const UA_DecodeBinaryOptions *options); JSON En/Decoding ---------------- The JSON decoding can parse the official encoding from the OPC UA specification. It further allows the following extensions: - The strict JSON format is relaxed to also allow the JSON5 extensions (https://json5.org/). This allows for more human-readable encoding and adds convenience features such as trailing commas in arrays and comments within JSON documents. - Int64/UInt64 don't necessarily have to be wrapped into a string. - If `UA_ENABLE_PARSING` is set, NodeIds and ExpandedNodeIds can be given in the string encoding (e.g. "ns=1;i=42", see `UA_NodeId_parse`). The standard encoding is to express NodeIds as JSON objects. These extensions are not intended to be used for the OPC UA protocol on the network. They were rather added to allow more convenient configuration file formats that also include data in the OPC UA type system. .. code-block:: c #ifdef UA_ENABLE_JSON_ENCODING typedef struct { const UA_String *namespaces; size_t namespacesSize; const UA_String *serverUris; size_t serverUrisSize; UA_Boolean useReversible; UA_Boolean prettyPrint; /* Add newlines and spaces for legibility */ /* Enabling the following options leads to non-standard compatible JSON5 * encoding! Use it for pretty-printing, but not for sending messages over * the network. (Our own decoding can still parse it.) */ UA_Boolean unquotedKeys; /* Don't print quotes around object element keys */ UA_Boolean stringNodeIds; /* String encoding for NodeIds, like "ns=1;i=42" */ } UA_EncodeJsonOptions; /* Returns the number of bytes the value src takes in json encoding. Returns * zero if an error occurs. */ size_t UA_calcSizeJson(const void *src, const UA_DataType *type, const UA_EncodeJsonOptions *options); /* Encodes the scalar value described by type to json encoding. * * @param src The value. Must not be NULL. * @param type The value type. Must not be NULL. * @param outBuf Pointer to ByteString containing the result if the encoding * was successful * @return Returns a statuscode whether encoding succeeded. */ UA_StatusCode UA_encodeJson(const void *src, const UA_DataType *type, UA_ByteString *outBuf, const UA_EncodeJsonOptions *options); /* The structure with the decoding options may be extended in the future. * Zero-out the entire structure initially to ensure code-compatibility when * more fields are added in a later release. */ typedef struct { const UA_String *namespaces; size_t namespacesSize; const UA_String *serverUris; size_t serverUrisSize; const UA_DataTypeArray *customTypes; /* Begin of a linked list with custom * datatype definitions */ size_t *decodedLength; /* If non-NULL, the length of the decoded input is * stored to the pointer. When this is set, decoding * succeeds also if there is more content after the * first JSON element in the input string. */ } UA_DecodeJsonOptions; /* Decodes a scalar value described by type from json encoding. * * @param src The buffer with the json encoded value. Must not be NULL. * @param dst The target value. Must not be NULL. The target is assumed to have * size type->memSize. The value is reset to zero before decoding. If * decoding fails, members are deleted and the value is reset (zeroed) * again. * @param type The value type. Must not be NULL. * @param options The options struct for decoding. * @return Returns a statuscode whether decoding succeeded. */ UA_StatusCode UA_decodeJson(const UA_ByteString *src, void *dst, const UA_DataType *type, const UA_DecodeJsonOptions *options); #endif /* UA_ENABLE_JSON_ENCODING */ XML En/Decoding ---------------- The XML decoding can parse the official encoding from the OPC UA specification. These extensions are not intended to be used for the OPC UA protocol on the network. They were rather added to allow more convenient configuration file formats that also include data in the OPC UA type system. .. code-block:: c #ifdef UA_ENABLE_XML_ENCODING typedef struct { UA_Boolean prettyPrint; /* Add newlines and spaces for legibility */ } UA_EncodeXmlOptions; /* Returns the number of bytes the value src takes in xml encoding. Returns * zero if an error occurs. */ size_t UA_calcSizeXml(const void *src, const UA_DataType *type, const UA_EncodeXmlOptions *options); /* Encodes the scalar value described by type to xml encoding. * * @param src The value. Must not be NULL. * @param type The value type. Must not be NULL. * @param outBuf Pointer to ByteString containing the result if the encoding * was successful * @return Returns a statuscode whether encoding succeeded. */ UA_StatusCode UA_encodeXml(const void *src, const UA_DataType *type, UA_ByteString *outBuf, const UA_EncodeXmlOptions *options); /* The structure with the decoding options may be extended in the future. * Zero-out the entire structure initially to ensure code-compatibility when * more fields are added in a later release. */ typedef struct { const UA_DataTypeArray *customTypes; /* Begin of a linked list with custom * datatype definitions */ } UA_DecodeXmlOptions; /* Decodes a scalar value described by type from xml encoding. * * @param src The buffer with the xml encoded value. Must not be NULL. * @param dst The target value. Must not be NULL. The target is assumed to have * size type->memSize. The value is reset to zero before decoding. If * decoding fails, members are deleted and the value is reset (zeroed) * again. * @param type The value type. Must not be NULL. * @param options The options struct for decoding, currently unused * @return Returns a statuscode whether decoding succeeded. */ UA_StatusCode UA_decodeXml(const UA_ByteString *src, void *dst, const UA_DataType *type, const UA_DecodeXmlOptions *options); #endif /* UA_ENABLE_XML_ENCODING */ .. _array-handling: Array handling -------------- In OPC UA, arrays can have a length of zero or more with the usual meaning. In addition, arrays can be undefined. Then, they don't even have a length. In the binary encoding, this is indicated by an array of length -1. In open62541 however, we use ``size_t`` for array lengths. An undefined array has length 0 and the data pointer is ``NULL``. An array of length 0 also has length 0 but a data pointer ``UA_EMPTY_ARRAY_SENTINEL``. .. code-block:: c /* Allocates and initializes an array of variables of a specific type * * @param size The requested array length * @param type The datatype description * @return Returns the memory location of the variable or NULL if no memory * could be allocated */ void * UA_Array_new(size_t size, const UA_DataType *type); /* Allocates and copies an array * * @param src The memory location of the source array * @param size The size of the array * @param dst The location of the pointer to the new array * @param type The datatype of the array members * @return Returns UA_STATUSCODE_GOOD or UA_STATUSCODE_BADOUTOFMEMORY */ UA_StatusCode UA_Array_copy(const void *src, size_t size, void **dst, const UA_DataType *type); /* Resizes (and reallocates) an array. The last entries are initialized to zero * if the array length is increased. If the array length is decreased, the last * entries are removed if the size is decreased. * * @param p Double pointer to the array memory. Can be overwritten by the result * of a realloc. * @param size The current size of the array. Overwritten in case of success. * @param newSize The new size of the array * @param type The datatype of the array members * @return Returns UA_STATUSCODE_GOOD or UA_STATUSCODE_BADOUTOFMEMORY. The * original array is left untouched in the failure case. */ UA_StatusCode UA_Array_resize(void **p, size_t *size, size_t newSize, const UA_DataType *type); /* Append the given element at the end of the array. The content is moved * (shallow copy) and the original memory is _init'ed if appending is * successful. * * @param p Double pointer to the array memory. Can be overwritten by the result * of a realloc. * @param size The current size of the array. Overwritten in case of success. * @param newElem The element to be appended. The memory is reset upon success. * @param type The datatype of the array members * @return Returns UA_STATUSCODE_GOOD or UA_STATUSCODE_BADOUTOFMEMORY. The * original array is left untouched in the failure case. */ UA_StatusCode UA_Array_append(void **p, size_t *size, void *newElem, const UA_DataType *type); /* Append a copy of the given element at the end of the array. * * @param p Double pointer to the array memory. Can be overwritten by the result * of a realloc. * @param size The current size of the array. Overwritten in case of success. * @param newElem The element to be appended. * @param type The datatype of the array members * @return Returns UA_STATUSCODE_GOOD or UA_STATUSCODE_BADOUTOFMEMORY. The * original array is left untouched in the failure case. */ UA_StatusCode UA_Array_appendCopy(void **p, size_t *size, const void *newElem, const UA_DataType *type); /* Deletes an array. * * @param p The memory location of the array * @param size The size of the array * @param type The datatype of the array members */ void UA_Array_delete(void *p, size_t size, const UA_DataType *type); .. _generated-types: Generated Data Type Definitions ------------------------------- The following standard-defined datatypes are auto-generated from XML files that are part of the OPC UA standard. All datatypes are built up from the 25 builtin-in datatypes from the :ref:`types` section. .. include:: types_generated.rst .. code-block:: c /* stop-doc-generation */